
 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Pentest-Report SecurityDriven.Inferno 09.2016
Cure53, Dr.-Ing. Mario Heiderich, Jann Horn

Index
Introduction
Scope
Identified Vulnerabilities

SDI-01-002 CryptoRandom.NextDouble() uses 32 bits of entropy (Low)
SDI-01-003 Random Number Reuse through Thread-Unsafeness (Critical)
SDI-01-006 Various Integer Overflows (Low)

Miscellaneous Issues
SDI-01-001 Unchecked arithmetic in ConstantTimeEqual (Low)
SDI-01-004 AesCtrCryptoTransform can be misused (Low)
SDI-01-005 No error checking in FromBase16() and FromBase32() (Info)
SDI-01-007 Inappropriate constant name: KEY_LENGTH (Info)

Conclusion

Introduction
“While many developers are aware enough not to roll their own crypto, they either pick
the wrong approach, screw up the implementation, or both. I've written the
SecurityDriven.NET book to highlight many challenges, misperceptions, and false
assumptions of producing secure, implementationally correct .NET solutions. However,
while recognizing the pitfalls of .NET cryptography is certainly useful, most of you would
feel a lot more comfortable using an existing .NET library for common crypto needs
rather than creating a risky ad hoc implementation. I know I would. Unfortunately,
most .NET crypto libraries are awful. Many of these libraries focus on providing as many
crypto primitives as possible, which is a huge disservice.

For example, if you follow “Internet advice”, you are likely to come across the Bouncy
Castle c# library (a typical StackOverflow recommendation). Bouncy Castle c# is a huge
(145k LOC), poorly-performing museum catalogue of crypto (some of it ancient), with old
Java implementations ported to equally-old .NET (2.0?). If you have a crypto
archaeology itch, Bouncy Castle will scratch it. However, for typical practical purposes a
new, modern, trusted, general-purpose .NET crypto library is required.”

From http://securitydriven.net/inferno/

Cure53, Berlin · 10/06/16 1/6

https://cure53.de/
http://securitydriven.net/inferno/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

This report documents a penetration test and code audit of the SecurityDriven.Inferno
library. The assessment was performed by two members of the Cure53 team in the
second half of September 2016 and yielded only seven rather low-risk findings.

As for the test approach, the investigated library is available as an open source.
Therefore, the audited code was taken from the public Github repository of the product,
with the details listed below under “Scope”. Since SecurityDriven.Inferno boasts a small
size and compact design, the entirety of the code has been put in scope by the library’s
maintainer and received a complete coverage during this two-day assessment. The tests
proceeded smoothly and the communication between the Cure53 team and the
SecurityDriven.Inferno maintainer was fast and fruitful, leading to the reported issues
being fixed quickly and in an appropriate manner.

Shedding light on the severity of the seven reported findings, it has to be noted that only
three were classified as actual security vulnerabilities and the remaining four constituted
general weaknesses. One of the spotted issues was considered to be of “Critical” impact
and was immediately addressed by the maintainer. Nevertheless, the majority of issues
should be seen as minor flaws and mishaps. For the sake of completion, it can also be
added that the library maintainer discovered another vulnerability during the testing
period, yet that issue is not listed in this report.

Note: All issues described in this audit report have been fixed by the library's maintainer.
All fixes have been confirmed to be valid by Cure53.

Scope
• SecurityDriven.Inferno Source Code

◦ https://github.com/sdrapkin/SecurityDriven.Inferno

Cure53, Berlin · 10/06/16 2/6

https://cure53.de/
https://github.com/sdrapkin/SecurityDriven.Inferno
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities

The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. SDI-01-001) for the purpose of facilitating any
future follow-up correspondence.

SDI-01-002 CryptoRandom.NextDouble() uses 32 bits of entropy (Low)

CryptoRandom.NextDouble() only uses 32 bits of entropy; a double could store 52 bits in
the fraction component.

Although most callers requiring randomness for cryptographic purposes will probably not
use NextDouble() anyway, it is recommended to document how much randomness the
returned values contain.

SDI-01-003 Random Number Reuse through Thread-Unsafeness (Critical)

CryptoRandom implements a NextBytesInternal method which attempts to fulfill requests
for small amounts of random data (<64 bytes) using a page-sized buffer _byteCache.
That buffer is shared between threads. Likely for performance reasons, this code
attempts to only use a single atomic operation (and its implied memory barrier) as a
synchronization mechanism in the fast path. In that path, the request can be fulfilled with
the use of the buffered-unused data. However, this method is not actually thread-safe.

Consider the following scenario:

1. The initial value of _byteCachePosition is 4088, so eight bytes of random data
are remaining.

2. Both Thread A and Thread B concurrently request eight bytes of random data
each.

3. Thread A starts running first. It performs the atomic add-and-return operation
(Interlocked.Add()), verifies that there is sufficient data remaining in the buffer
and enters the fast path.

4. Now Thread B runs. It also performs the atomic add-and-return operation,
detects that the buffer does not have sufficient random data left. Therefore, it
takes a lock on _byteCache, refills the buffer with new random data, copies some
of the new random data to the output buffer and resets _byteCachePosition. This
is so that future requests are able to use the cached data.

5. Thread B returns.

Cure53, Berlin · 10/06/16 3/6

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

6. Now, Thread A continues running. It copies data from the end of _byteCache into
the output buffer and returns.

The problem here is stems from the fact that Thread A reserves memory in Step 3, yet
that very memory reservation is invalidated by Thread B in Step 4. There the memory is
refilled and the _byteCachePosition is reset, so that in Step 6 Thread A reads memory
that has not been reserved. Once both Thread A and Thread B have returned,
_byteCachePosition is eight, which implies that only the first eight bytes of _byteCache
have been used so far. However, actually the last eight bytes have also been used
already by Thread A. As a result, a reuse of random data will take place.

It is recommended to never use low-level primitives like interlocked operations for
synchronization in a security-critical code. High-level mechanisms provided by the
standard library should be employed instead. In this case, static thread-local buffers
could be used to implement a fast random number generator that does not require
synchronization.

The same issue is present in GetRandomUInt() and GetRandomULong().

SDI-01-006 Various Integer Overflows (Low)

Only few functions in the Inferno library perform explicit overflow checks when adding or
multiplying length values and other integers. Most of the overflows will always cause a
negative number to be used as an array index, causing an IndexOutOfRangeException.
While the latter is not a very clean and optimal approach, it should not be a severe issue.

However, in the following cases the resulting behavior might be dangerous:

• In EtM_Transforms.cs it is not verified that the currentChunkNumber counter
does not wrap. Theoretically, if around 360 Terabytes are streamed through
EtM_Transforms.cs in the same session, this could permit chunk reordering
attacks.

In the following cases, the function will eventually abort, but only after incorrect
computations have been already performed. Once again this should continue to be seen
as safe but might become unsafe after minor code changes, namely in the case outlined
below.

• Both Base32Extensions.ToBase32() implementations compute bitLength =
length * 8 and allocate an output buffer based on bitLength. An overflow will

Cure53, Berlin · 10/06/16 4/6

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

cause the output buffer to be too small, which will exclusively be detected in the
loop that writes into the output buffer.

It is recommended to, at the very least in the presented cases, use checked additions.
Moreover it is recommended to investigate whether the performance impact of checked
arithmetics is sufficiently low to feasibly employ checked arithmetics for all code, or at
least majority of the code, with opt-outs for safe, hot code.

Miscellaneous Issues

This section covers those noteworthy findings that did not lead to an exploit but might aid
attackers in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

SDI-01-001 Unchecked arithmetic in ConstantTimeEqual (Low)

The implementations of ConstantTimeEqual operate with five parameters shown below.

if (xOffset + length > x.Length)
 throw new ArgumentException("xOffset + length > x.Length");
if (yOffset + length > y.Length)
 throw new ArgumentException("yOffset + length > y.Length");

Both additions could overflow, thus bypassing the check. However, this would simply
lead to another exception. The latter exception would occur when an attempt is made to
access one of the arrays / strings out of bounds or at a negative index. It is
recommended to either add the "checked" keyword for these checks or remove them.

SDI-01-004 AesCtrCryptoTransform can be misused (Low)

AesCtrCryptoTransform assumes that the caller is aware of the convention that
TransformBlock() must only be called with full blocks while TransformFinalBlock() may
be called with an input size that is not divisible by AES_BLOCK_SIZE. However, if a
caller is not aware of the convention and misuses TransformBlock(), this could cause
key-stream reuse because the counter is not incremented after processing a partial
block.

It is recommended to let TransformBlock() verify that inputCount % AES_BLOCK_SIZE
is zero. TransformBlock() and TransformFinalBlock() could then both call the same
function, so that the actual task is completed this way.

Cure53, Berlin · 10/06/16 5/6

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

SDI-01-005 No error checking in FromBase16() and FromBase32() (Info)

The functions FromBase16() and FromBase32() fail to throw errors in the following
cases:

• For both functions: when the input string contains characters that are not in the
defined alphabet, the characters from outside the alphabet will silently be treated
as characters with a value “0”.

• FromBase16() only: str16 has an uneven length - in this case, the last character
will be silently ignored.

Despite this being rather unlikely to have security impact, it might still make sense to add
the appropriate checks here.

SDI-01-007 Inappropriate constant name: KEY_LENGTH (Info)

The constant KEY_LENGTH in SP800_108_Ctr.cs is named inappropriately. More
specifically, it is the length of the length of the key, not the length of the key. It is
recommended to rename it to KEY_LENGTH_LENGTH or similar.

Conclusion
This two-day assignment, carried out by two testers of the Cure53 team in late
September of 2016, revealed the tested SecurityDriven.Inferno library to be largely in
line with what it promises to its users and quite the security-centered.

The aim of the project was clear and the scope reflected its purpose accordingly. The
code was evaluated as cleanly-written and easy to audit, while the seven reported
findings posed almost no major risks for the integrity and production-readiness of the
SecurityDriven.Inferno library. Judging by the professional attitude of the maintainer, the
Cure53 testers have no doubts that the issues get addressed quickly and the project
moves forward on the right path once in production.

In sum, the library makes a positive and robust impression. In spite of one “Critical”
finding, once all findings are addressed and fixed appropriately, the project can be
considered production-ready.

Cure53 would like to thank Stan Drapkin as well as Chad Hurley of the OTF for their
excellent project coordination, support and assistance, both before and during this
assignment.

Cure53, Berlin · 10/06/16 6/6

https://cure53.de/
mailto:mario@cure53.de

